Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors

Florian Mullershausen,* Luis M. Craveiro,† Youngah Shin,‡ Marta Cortes-Cros,§ Frederic Bassilana,* Maribel Osinde,¶ William L. Wishart,§ Danilo Guerini,** Michaela Thallmair,† Martin E. Schwab,† Rajeev Sivasankaran,‡ Klaus Seuwen* and Kumlesh K. Dev¶,†

*Department of G Protein-Coupled Receptors, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
†Brain Research Institute, University of Zurich and ETH Zurich, Zurich, Switzerland
‡Models of Disease Center, Novartis Institutes for BioMedical Research, Novartis Pharma, Cambridge, MA, USA
§Department of Genome & Proteome Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
¶Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
**Department of Autoimmunity and Transplantation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland

Abstract
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P. Using calcium imaging in mixed cultures from embryonic rat cortex we show that astrocytes are the major cell type responsive to FTY720P in this assay. In enriched astrocyte cultures, we detect expression of S1P1 and S1P3 receptors and demonstrate that FTY720P activates Gi protein-mediated signaling cascades. We also show that FTY720P as well as the S1P1-selective agonist SEW2871 stimulate astrocyte migration. The data indicate that FTY720P exerts its effects on astrocytes predominantly via the activation of S1P1 receptors, whereas S1P signals through both S1P1 and S1P3 receptors. We suggest that this distinct pharmacological profile of FTY720P, compared with S1P, could play a role in the therapeutic effects of FTY720 in multiple sclerosis.

Keywords: G protein-coupled receptors, multiple sclerosis, signal transduction, sphingosine-1-phosphate.

The lipid messenger sphingosine-1-phosphate (S1P) is generated by phosphorylation of sphingosine by sphingosine kinases (Baumruker et al. 2005). Platelets and endothelial cells are sources of S1P, which is present at concentrations above 100 nmol/L in the plasma (Pyne and Pyne 2000). Most of the effects of S1P are mediated by a family of G protein-coupled receptors designated S1P1–S1P5, which were formerly known as products of ‘endothelial differentiation genes’ (Chun et al. 2002). S1P receptors (S1P-Rs) are targeted by the drug fingolimod (FTY720) and its immunomodulatory activity shows efficacy in animal models of transplantation (Brinkmann and Lynch 2002). More importantly, FTY720 is currently in phase III clinical trials for the treatment of the autoimmune disorder multiple sclerosis (MS) (Kappos et al. 2005, 2006; Gardell et al. 2006).

Received December 28, 2006; revised manuscript received March 1, 2007; accepted March 13, 2007.

Address correspondence and reprint requests to Kumlesh K. Dev, University College Cork, Departments of Anatomy & Neuroscience, Windle Building, Cork, Ireland. E-mail: k.dev@ucc.ie

†The present address of Kumlesh K. Dev is the Departments of Anatomy & Neuroscience University College Cork, Windle Building, Cork, Ireland.

Abbreviations used: AC, adenylyl cyclase; CHO, Chinese Hamster Ovary; FTY720, fingolimod; FTY720P, phosphorylated version of FTY720; GFAP, glial fibrillary acidic protein; IP, inositol-phosphates; HBSS, Hapes-buffered saline solution; MS, multiple sclerosis; PLC, phospholipase C; PTX, pertussis toxin; S1P, sphingosine-1-phosphate; SEW2871, [5-(4-phenyl-5-trifluoromethylthiophen-2-yl)-3-(3-trifluoro- methylphenyl)-(1,2,4)-oxadiazole].

© 2007 The Authors

1151
Like sphingosine, FTY720 is phosphorylated in vivo by sphingosine kinases to yield the active metabolite FTY720-phosphate (FTY720P), which is an agonist for S1P1, 3, 4, and 5 and inactive on S1P2 receptors (Brinkmann et al. 2002). Treatment with FTY720 inhibits lymphocyte egress from secondary lymphoid organs. This immunomodulatory action does not result in generalized immunosuppression but rather prevents the migration of lymphocytes to the peripheral sites of inflammation (Pinschewer et al. 2000). The inhibition of egress from lymphoid organs is mediated by activation of S1P1 receptors on lymphocytes and is considered to underlie most of the beneficial effects of FTY720 in the treatment of MS (Mandala et al. 2002; Graier and Goetzl 2004; Matloubian et al. 2004).

As S1P receptors are ubiquitously expressed, including the CNS (Chun et al. 2000), the efficacy of FTY720 in MS may involve mechanisms in addition to lymphocyte trafficking. Moreover, the potencies and efficacies of FTY720P on the family of S1P receptors are different from S1P and may trigger distinct signaling events. For example, previous studies have shown that S1P regulates cell migration via S1P1 and S1P2 receptors (Okamoto et al. 2000), whereas the effects of FTY720P are independent of S1P2 receptors. We therefore aimed to characterize the specific effects of FTY720P on cells of the CNS. Here, we demonstrate that FTY720P triggers numerous intracellular signaling events in astrocytes mainly via the activation of S1P1 receptors. Functionally, we also show that FTY720P and a selective S1P1 receptor agonist promote astrocyte migration. Taken together, these data support the notion that FTY720P acts beyond immunomodulation and directly regulates astrocyte function.

Materials and methods

Chemicals and tools

FTY720P is a phosphorylated version of FTY720 which is a fungal metabolite (full name, 2-amino-2-[2-[(4-octyl)phenyl]ethyl]propane-1,3-diol) derived from ISP-1 (myriocin) and was used as a pan agonist for S1P1, 3, 4, and 5 receptor subtypes. In all experiments we used the pure active (S)-enantiomer of FTY720P which corresponds to the in vivo phosphorylated product of FTY720 (Albert et al. 2005). SEW2871 [5-(4-phenyl-5-trifluoromethylthiophen-2-yl)-3-(3-trifluoromethylphenyl)1,2,4]-oxadiazole] was used as a S1P1 selective compound reported to have a nanomolar affinity for S1P1 (Sanna et al. 2004; Bolick et al. 2005; Ito et al. 2005; Karliner 2005). AUY954 is also a S1P1 selective compound with EC50 values of approximately 0.5 nmol/L in fluorescent imaging plate reader and GTPγS assays, using Chinese Hamster Ovary (CHO) cell lines stably expressing S1P receptors (Pan et al. 2006).

Mixed rat cortical primary cultures

Cortical cultures were prepared from embryonic day-18 Sprague-Dawley rats. Cortices were dissected in cold Hepes-buffered saline solution (HBSS) and then dissociated using trypsin for 10 min at 37°C. Cultures were plated onto poly-L-lysine-coated Lab-Tek II eight-well chambered coverglasses (Nalge Nunc International) and maintained at 37°C, 5% CO2 in Neurobasal media with B27 supplement (Invitrogen AG, Basel, Switzerland). Mixed cultures were used after 7 days in vitro. Animal handling was conducted in accordance with Swiss animal welfare authorities.

Rat astrocyte cultures

Primary astrocyte cultures were prepared from postnatal day-2 Sprague-Dawley rats as follows: whole brains were dissected in cold HBSS (Invitrogen), 0.15% MgSO4, then dissociated using trypsin for 10 min at 37°C. After trituration, cells were resuspended in Basal Medium Eagle (Invitrogen), 10% horse serum (Invitrogen) and plated onto poly-L-lysine coated flasks (Beckton Dickinson Labware) and maintained at 37°C, 5% CO2. After 2 days, cultures were washed and the medium (Basal Medium Eagle, horse serum) replaced. Then medium was changed every 2 days until day 9, when cultures were shaken to remove oligodendrocytes, and remaining astrocytes were trypsinized and replated onto either poly-L-lysine-coated 24-well plates, or eight-well chambered coverglasses (Lab-Tek II; Nalge Nunc International).

Calcium signaling

Cells were grown on Lab-Tek II eight-well-chambered coverglasses (Nalge Nunc International). Cells were loaded with 1 μmol/L Fluo-4 AM (Invitrogen) in HBSS containing probenecid (0.5 μmol/L) at 37°C for 15 min. Cells were washed, and fresh HBSS (0.5 μmol/L probenecid) was added. Calcium responses were analyzed in a laser-scanning microscope (LSM510 META; Carl-Zeiss AG, Feldbach, Switzerland) at 20°C; scanning speed was 2 frames/s. Stimulation of cells was performed by adding a 4x concentrated solution (in HBSS, Probenecid) of S1P, FTY720P or glutamate to the cells with a manual pipette.

Immunocytochemistry

Fixation and permeabilization of cells was carried out using the Cytotox/Cytoperm kit (BD Biosciences, Palo Alto, CA, USA). Chambers were washed with phosphate-buffered saline, Cytotox/Cytoperm solution was added (300 μL/well, eight-well chambered coverglasses) and the samples were fixed at 4°C for 20 min. The wells were then rinsed twice with washing solution (1×, diluted from 10× stock; BD Biosciences) and blocking buffer (140 mmol/L NaCl, 10 mmol/L HEPES, 5 mmol/L CaCl2, 5% fetal calf serum, 1% bovine serum albumin, 0.04% Na3 in washing solution) was added (300 μL/well) for at least 20 min at 20°C. Staining of organotypic hippocampal slices is described in the corresponding section. Primary antibodies were diluted into blocking buffer and left on the samples overnight at 4°C. Monoclonal anti-gliarial fibrillary acidic protein (GFAP) (MAB360, dilution 1 : 500), monoclonal anti-CPNpse (MAB326, dilution 1 : 200) and monoclonal anti-CD11b (CBL 1512, dilution 1 : 200) were from Chemicon International (Temecula, CA, USA), and monoclonal anti-βIII-tubulin was from R&D Systems Inc. (Minneapolis, MN, USA; MAB1195, dilution 1 : 500). Cells
were rinsed twice and incubated with anti-rabbit and/or anti-mouse secondary antibodies coupled to Alexa 488 or Alexa 633 fluorescent dyes (Invitrogen) for 2–3 h at 20°C, washed and viewed with a Zeiss LSM 510 META confocal microscope (Carl-Zeiss AG); nuclei were counter-stained with 4,6-diamidino-2-phenylindole.

Quantitative real-time PCR
Whole rat brain (postnatal day 2) or astrocyte cultures were disrupted in RNeasy Lysis Buffer (Qiagen, AG, Hombrechtikon, Switzerland) using a TissueLyser (Qiagen). RNA purification was performed with TRIZol (Invitrogen) according to the manufacturer's protocol. Total RNA was further purified including a DNase I treatment using the RNeasy Minelute kit (Qiagen). Five microgram of total RNA was processed to a reverse transcription using the Superscript III kit (Invitrogen) and a mix of dN6 and oligodT oligonucleotides. A minus reverse transcriptase control was kept to monitor the potential remaining genomic contamination. The real-time PCR was done using a Rotor-Gene RG-3000A (Corbett Research UK Ltd, Cambridge, UK). 1/50 000 SybrGreen (Invitrogen) for 2–3 h at 20°C, washed and viewed with a Zeiss LSM 510 META confocal microscope (Carl-Zeiss AG); nuclei were counter-stained with 4,6-diamidino-2-phenylindole.

Scratch-wound assay and astrocyte proliferation assay
Purified cortical astrocytes were prepared from postnatal day 2–3 mouse brains. Briefly, meninges were removed from cortices and dissociated mechanically by trituration. Suspended cells were passed through a cell strainer (100 μm) and cultured for 9–10 days until confluent in Dulbecco’s Modified Eagle Medium (high glucose, Invitrogen) supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were shaken at 280 rpm on a rotating platform for 6–8 h at 37°C and then treated with 10 μmol/L cytochrome arabinoside for 48 h. The protocol yielded >95% pure astrocyte cultures. Astrocytes were plated onto 2-well chamber slides and cultured in serum free Dulbecco’s Modified Eagle Medium for 48 h. Following serum starvation, media was removed and a reference line was drawn at the bottom of each slide. A scratch was made in the astrocyte monolayer with a 1 mL pipette tip along the reference line. Cells were washed twice with phosphate-buffered saline to remove cell debris and fresh media containing interferon-gamma and Transforming Growth Factor α (100 and 10 ng/mL) or S1P receptor agonists was added. Images were taken at 0 and 72 h with the same field recorded in each case. To determine the area of migration the leading edge of the scratched cells at 0 h was superimposed onto the image taken at 72 h (Axiovision software, Zeiss). Measurements from quadruplicates were averaged to determine the area of migration. A colorimetric assay (MTT, Chemicon International) to assess proliferation was performed under similar conditions in 96-well plates.

Hippocampal organotypic slice cultures
Hippocampal slices were cultured according to the protocol of Stoppini (Stoppini et al. 1991). Briefly, the hippocampi of P7 rats were dissected and cut into 350-μm-thick slices. Slices were separated in ice cold dissecting medium and placed into Millicell-CM inserts (Millipore, Billerica, MA, USA) with 1 mL of culture medium in six-well plates. Cultures were treated with FTY720P (1 nmol/L or 5 nmol/L) or SEW2871 (100 nmol/L) for 1 week at 33°C, 5% CO2. Slices were fixed with 4% paraformaldehyde overnight and then permeabilized overnight in permeabilization buffer [Tris-buffered saline, supplemented with 0.2% TopBlock (Juro AG, Luzern, Switzerland), 1.5% horse serum, and 0.3% Triton X-100]. Primary antibody incubation with mouse monoclonal anti-GFAP (Chemicon, MAB360, dilution 1 : 500) was performed in the permeabilization buffer for 5 days. Secondary antibody, Alexa 488 anti-mouse (Invitrogen), was incubated for 2 h. Cultures were then imaged with a Zeiss Axioskop2 mot plus. The number of GFAP positive cells present beyond the edge of the culture was counted.

Results
FTY720P elicits calcium signals in astrocytes
As S1P receptors are widely expressed in the CNS (Chun et al. 2000), we probed for calcium signals triggered by FTY720P

© 2007 The Authors
and S1P in mixed cortical cultures from rat embryos. We found that both S1P (100 nmol/L) and FTY720P (100 nmol/L) elicited calcium signals in a sub-population of cells, while all cells responded to glutamate (1 mmol/L) (Fig. 1). To identify the cell type responding to FTY720P, we performed Ca2+ imaging and, consecutively, immunocytochemical analysis. We observed FTY720P-evoked Ca2+ signals in GFAP immunopositive astrocytes (Fig. 2a), but not in neurons stained for beta-III tubulin (Fig. 2b).

FTY720P stimulates calcium signals via S1P receptors

We next determined whether the Ca2+ signals evoked by FTY720P and S1P in astrocytes were mediated via a common signaling pathway in our experimental conditions. We pre-stimulated the mixed cultures with a high concentration of S1P (1 μmol/L) to saturate all S1P receptors prior to the addition of a high concentration of FTY720P (1 μmol/L). We found that pre-stimulation by S1P abrogated any further response to FTY720P, but not to glutamate (Fig. 3). These results strongly suggest that the FTY720P-evoked Ca2+ signals in astrocytes are mediated via S1P receptors.

Characterization and the effects of FTY720P on pure astrocyte cultures

To learn which S1P receptor subtypes are involved in FTY720P-mediated signaling in astrocytes, we first characterized the expression profile using pure astrocyte cultures. Immunocytochemical analysis showed that these cultures contained mainly astrocytes (>95%) with few oligodendrocytes, neurons, and microglia (Fig. 4a). In agreement, real-time PCR showed a 20-fold enrichment of GFAP mRNA in our astrocyte cultures when compared with whole brain tissue (data not shown). The pure astrocyte cultures expressed S1P receptor mRNA with a rank order of S1P1 >> S1P3 > S1P2 > S1P5 and no S1P4. An enrichment of S1P3 mRNA was observed when compared with whole brain tissue (Fig. 4b). Our pure astrocytes showed S1P- and FTY720P-evoked Ca2+ signals (Fig. 4c) thus confirming the results obtained using the mixed cortical cultures.

FTY720P-mediated inhibition of cAMP formation in astrocytes

Having found a relatively high expression of S1P1 and S1P3 receptors in astrocytes, we next aimed to dissect the contributions of both subtypes in FTY720P-mediated signal transduction. As all known S1P receptors couple to Gi proteins, we first determined the attenuation of Forskolin-induced cAMP formation as a direct measure of receptor activation. We found that sub-nanomolar concentrations of FTY720P effectively inhibited cAMP formation (Fig. 5a). In contrast, a comparable inhibition by S1P required at least 1000-fold higher concentrations. To specifically assess the role of S1P1 receptors, we examined the activity of the S1P1-selective agonists SEW2871 (Jo et al. 2005) and AUY954 (Pan et al. 2006). Both agonists effectively attenuated Forskolin-induced cAMP formation to a comparable extent as S1P and FTY720P (Fig. 5a). The effects of all agonists were concentration-dependent and sensitive to PTX (Fig. 5b), demonstrating the involvement of Gi proteins. These data suggest that activation of S1P1 receptors is
sufficient to account for the effects mediated by FTY720P on cAMP formation.

Stimulation of IP formation by FTY720P in astrocytes

Sphingosine-1-phosphate 1 receptors are exclusively coupled to PTX-sensitive Gi proteins, whilst S1P3 receptors are predominantly coupled to Gq proteins (Okamoto et al. 1998, 1999). The activation of phospholipase C (PLC) and the formation of IP is generally mediated by the \(\alpha \) subunits of Gq proteins, however activation can also occur via the \(\beta \gamma \) subunits of Gi proteins. We compared the effects of S1P and FTY720P on the activation of PLC in the presence and absence of PTX. We found that S1P (1 \(\mu \)mol/L) caused 10-fold increase in IP levels, which was in part sensitive to PTX indicating the involvement of both Gi and Gq protein-coupled receptors. In contrast, FTY720P (100 nmol/L) maximally induced a four-fold increase in IP levels, that was largely sensitive to PTX (Fig. 6). The data suggest that FTY720P activates Gi proteins with high efficiency thus allowing a stimulation of IP formation, with minor involvement of Gq proteins. The relatively high concentrations of FTY720P needed to stimulate IP formation likely results from the poor efficiency of Gi-coupled S1P1 receptors to activate PLC. Whilst the inhibition of adenylyl cyclase (AC) by active \(\alpha \) subunits of Gi proteins occurs at low receptor occupancies, a higher number of activated receptors and high concentrations of \(\beta \gamma \) subunits are required to activate PLC (Birnbaumer 1992). The results are also consistent with a partial agonism of FTY720P on Gq-coupled S1P3 receptors, as confirmed in CHO cells stably expressing human S1P3 receptors (see inset, Fig. 6). Furthermore, the selective S1P1 receptor agonists SEW2871 and AUY954, which exclusively induce activation of Gi proteins, elicit a moderate two-fold increase in IP formation that is

Fig. 2 Identification of astrocytes as cells responding to FTY720P in mixed cortical cultures. Images are taken from time–lapse series and show Ca\(^{2+}\) signals before stimulation and after consecutive stimulation with FTYP (FTY720P, 100 mol/L) and then Glu (glutamate, 1 mmol/L). After calcium imaging, the cells were fixed and stained against GFAP to detect astrocytes or against \(\beta I I I \)-tubulin to label neurons (\(\beta I I I \)-tubulin). Arrowheads indicate FTY720P-responsive cells (positive for GFAP, negative for \(\beta I I I \)-tubulin) and arrows point to cells responding only to glutamate (negative for GFAP, positive for \(\beta I I I \)-tubulin). Note that FTY720P responsive cells were all positive for GFAP but never for \(\beta I I I \)-tubulin.

Fig. 3 Sphingosine-1-phosphate treatment desensitizes the calcium responses elicited by FTY720P. The calcium images shown were taken from a time–lapse series of mixed cortical cultures before stimulation (first panel), after addition of S1P (1 \(\mu \)mol/L, second panel), after subsequent addition of FTY720P (1 \(\mu \)mol/L, third panel) and finally after adding glutamate (1 mmol/L, fourth panel) as a positive control. Arrowheads indicate two areas of interest, the corresponding traces of the fluorescence intensities over time are shown in the graph.

© 2007 The Authors
Fig. 4 Detection of S1P1 receptor and calcium responses in enriched astrocyte cultures. (a) The enriched astrocytes cultures were stained with cell type specific antibodies against GFAP (astrocytes), CNPase (oligodendrocytes), βIII-tubulin (neurons), and CD11b (microglia). Images were taken at low magnification (20× objective) to visualize a large number of cells (DAPI stained nuclei, blue). (b) The mRNA expression profile of S1P receptor subtypes in rat whole brain and pure cortical astrocyte cultures. Shown is a representative experiment. All values are presented as percentage of S1P1 mRNA found in whole brain, which was defined as 100%. (c) Recordings of the mean fluorescence intensity of a full field over time derived from calcium imaging in enriched astrocyte cultures.

Fig. 5 FTY720P inhibits cAMP formation in pure astrocytes cultures via Gi proteins. (a) Astrocytes were stimulated with Forskolin in the absence or presence of the indicated concentrations of S1P receptor agonists. The cAMP levels are expressed as percentage of the Forskolin control and represent mean ±SEM of three independent experiments performed in triplicates. (b) Prior to stimulation with Forskolin and the indicated S1P receptor agonists, astrocytes were treated with PTX (100 ng/mL, 4 h). The cAMP levels are expressed as percentage of the Forskolin control and represent mean ±SEM of at least two independent experiments performed in triplicates.
completely abolished after PTX treatment. The higher IP levels elicited by FTY720P can be explained by the synergism of Gi-mediated IP formation and the partial activation of Gq-coupled S1P3 receptors. A synergistic effect of Gi- and Gq proteins on PLC activity has been previously described in various cells including primary astrocytes (Biber et al. 1997, Dickenson and Hill 1998).

Taken together, we conclude that the FTY720P-induced activation of PLC occurs mainly via S1P1/Gi which is enhanced by a weak but synergistic component of S1P3/Gq signaling.

FTY720P promotes astrocyte migration

Finally, we studied the effects of FTY720P on astrocyte migration. Previous reports have suggested that S1P1 and S1P3 receptor activation promotes cell migration in transfected CHO cells and endothelial cells. In contrast, S1P2 receptors play an inhibitory role in migration of heterologous cells and smooth muscle cells (Kon et al. 1999; Kimura et al. 2000; Okamoto et al. 2000; Lee et al. 2001; Tamama et al. 2001). We found that FTY720P increased cell migration in a scratch-wound assay using a monolayer of pure astrocytes (Fig. 7a). Both FTY720P (10 nmol/L) and the S1P1 selective agonist SEW2871 (100 nmol/L), promoted astrocyte migration, to a similar extent as the positive control treated with interferon-gamma and Transforming Growth Factor α (100 and 10 ng/mL). We observed no effects of FTY720P or SEW2871 on cell numbers by fluorimetric viability assay (Fig. 7a). To support this data, hippocampal organotypic slice cultures were treated with FTY720P and astrocyte migration was assessed by GFAP immunostaining. We noted an increase in the number of astrocytes migrating beyond the slice edge when treated with FTY720P (1 or 5 nmol/L) (Fig. 7b). These data show that FTY720 and the activation of S1P1 receptors promote astrocyte migration in primary cultures.

Discussion

Fingolimod (FTY720) has recently entered phase III clinical trials for the treatment of MS. The drug is phosphorylated in vivo to yield the active metabolite, FTY720P, which is a potent agonist on all S1P receptors except S1P2 (Brinkmann et al. 2002). The endogenous ligand, S1P, is known to evoke signaling events in astrocytes, including the inhibition of AC, stimulation of PLC, elevation of intracellular Ca²⁺, and an increase in ERK phosphorylation (Pebay et al. 2001; Malchinkhuu et al. 2003; Rao et al. 2003, 2004; Sorensen et al. 2003). In this report, we show that FTY720P triggers a number of signaling events in astrocytes predominantly via S1P1 receptors whereas S1P additionally involves S1P3 receptors. Importantly, we demonstrate a functional role of FTY720P in astrocyte migration which is mimicked by a S1P1 selective agonist.

Using mixed cortical cultures we find an FTY720P-evoked intracellular Ca²⁺ elevation in astrocytes but not in
neurons. Stimulation with a high concentration of S1P prevents FTY720P from eliciting any further Ca²⁺ response, most likely by the saturation of common S1P receptors as demonstrated by the strong intracellular Ca²⁺ elevation triggered by a subsequent application of glutamate. We did not detect any FTY720P or glutamate-evoked Ca²⁺ signals in oligodendrocytes which were, however, present at low numbers in the mixed cell preparations (not shown). The possible effects of FTY720P-mediated signaling in oligodendrocytes and microglia are therefore likely to be better studied in culture systems enriched for these cell types.

Expression profiling of S1P receptors in enriched astrocyte cultures show high levels of S1P1 and S1P3, with little or no mRNA for S1P2, S1P4, and S1P5, in agreement with previous observations (Pebay et al. 2001; Malchinkhuu et al. 2003; Rao et al. 2003, 2004; Sorensen et al. 2003; Anelli et al. 2005; Bassi et al. 2006). The expression profile and the pharmacological properties of FTY720P imply a key role for S1P1 receptors in mediating the response to FTY720P in astrocytes. The results also suggest that astrocytes are directly stimulated by FTY720P rather than by chemical communication and/or physical interaction with neurons and oligodendrocytes.

The S1P1 receptor exclusively couples to Gi proteins while the S1P3 receptor couples to both Gq and Gi proteins (Okamoto et al. 1999; Windh et al. 1999). We show FTY720P inhibits cAMP formation in a PTX sensitive manner, demonstrating the involvement of Gi protein-coupled receptors. FTY720P effectively inhibits cAMP formation at 1000-fold lower concentrations compared with S1P, which may be attributed to better a coupling efficiency of FTY720P-bound S1P1 receptors and/or a rapid turnover of S1P by astrocytes. As FTY720P is only a partial agonist on S1P3 receptors (Brinkmann et al. 2002), we suggest that the inhibition of AC by FTY720P occurs mainly via the S1P1 receptor. In support of this notion, we find that both S1P1-selective agonists, SEW2871 and AUY954, are as efficacious as FTY720P in attenuating cAMP formation.

To further assess the signaling of FTY720P via S1P3 receptors on astrocytes, we measured the formation of IP...
which is catalyzed by PLC. Ca2+ release downstream of G protein-coupled receptors typically occurs by G\textsubscript{q}\textsubscript{11}-mediated activation of PLC-\(\beta\)-1-4, leading to the formation of IP\textsubscript{3} that in turn triggers liberation of Ca2+ from intracellular stores. The activation of Gi proteins can also elicit a Ca2+ response via \(\beta\gamma\) subunit-mediated stimulation of PLC-\(\beta\)3 (Birnbaumer 1992; Katz et al. 1992; Exton 1997). We treated astrocytes with PTX to dissect the role of S1P1/Gi and S1P3/Gq in FTY720P-induced IP formation. In these experiments FTY720P partially elevated IP formation, which was largely sensitive to PTX, in contrast to S1P. The data clearly indicate that a small portion of IP formation is mediated by S1P3/Gq signaling, which is consistent with partial agonism of FTY720P on S1P3 receptors. Furthermore, the IP formation induced by S1P1 selective agonists was fully attenuated by PTX treatment. Taken together, our data show that FTY720P activates S1P1/Gi signaling to AC and PLC in primary astrocytes and extends previous studies on S1P-evoked signal transduction in heterologous cells (Okamoto et al. 1998, 1999).

Finally, FTY720P stimulates the migration of astrocytes in both dissociated cell monolayers and brain slices. As FTY720P is applied to the incubation media, the migratory responses likely reflect an increased chemokinetic mobility of cells rather than directional movement along a concentration gradient. The fact that a S1P1 selective agonist, SEW2871, induces similar responses indicates a key role for S1P1 receptors. These data are in agreement with previous reports showing that S1P1 receptor activation promotes cell migration in various cell types, including endothelial cells, embryonic fibroblasts, and heterologous cells (Kon et al. 1999; Liu et al. 2000; Okamoto et al. 2000; Lee et al. 2001; Tamama et al. 2001). Moreover, S1P has been shown to evoke a chemotactic response in primary Schwann cells and to increase chemokinetic mobility (Barber et al. 2004).

There are two important differences between S1P and FTY720P. Firstly, S1P is a full agonist on S1P2 and S1P3 receptors whereas FTY720P does not bind S1P2 and is a partial agonist on S1P3 receptors. As S1P2 receptors inhibit migration (Okamoto et al. 2000) the effects of S1P likely result from a balance of S1P1 and S1P2 activity. In contrast, FTY720P can be assumed to promote migration without exerting a S1P2-associated inhibitory component. Secondly, the FTY720P-bound S1P1 receptors exhibit a better coupling efficiency to Gi proteins, compared with S1P-bound receptors. Therefore, we suggest that FTY720 strongly stimulates Gi signaling via S1P1 (and not S1P3) which promotes astrocyte migration. In support of this notion, studies using embryonic fibroblasts from S1P1 knock out mice are refractory to S1P-induced migration, while still expressing normal levels of S1P2 and S1P3 receptors (Liu et al. 2000).

Other functional effects of S1P and its receptors on astrocytes have been reported. For example, astrocytes have the ability to release S1P in response to fibroblast growth factor and tumor necrosis factor \(\alpha\) (Riboni et al. 2000; Vann et al. 2002; Anelli et al. 2005; Bassi et al. 2006) and in turn S1P stimulates the proliferation of astrocytes in an ERK dependent mechanism (Pebay et al. 2001; Malchinkhuu et al. 2003; Sorensen et al. 2003; Yamagata et al. 2003). In our scratch wound migration assay, we did not observe an increase in astrocyte cell numbers when treated with FTY720P, possibly due to its lack or partial activity on S1P2 and S1P3 receptors, respectively. In vivo, the injection of S1P into the striatum of mice results in an increase of GFAP staining (Sorensen et al. 2003) and the exposure of astrocytes to S1P results in the release of growth factors such as glial cell-line derived neurotrophic factor, ciliary neurotrophic factor and fibroblast growth factor (Sato et al. 1999, 2000; Malchinkhuu et al. 2003; Yamagata et al. 2003; Bassi et al. 2006). Similar brain injection studies remain to be performed in order to compare the effects of FTY720P with S1P in vivo.

In conclusion, our results show that FTY720P triggers many of the intracellular signaling pathways akin to S1P in cultured astrocytes. Further characterization of the subtle pharmacological and functional differences between S1P and FTY720P may be important in understanding the possible involvement of astrocytes in the beneficial effects of FTY720 in patients suffering from MS.

Acknowledgements

The S1P1 selective compounds, AUY954 and SEW2871, were kindly gifted by Shifeng Pan (Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA) and Rainer Albert (Department of Autoimmunity and Transplantation, Novartis Institutes for Biomedical Research, Basel, Switzerland), respectively. We are grateful to Drs. Anis Mir, Rainer Kuhn, and Greame Bilbe (Department of Neurosciences, Novartis Institutes for Biomedical Research, Basel, Switzerland) for insightful discussions and for providing comments on our manuscript.

References

